
The effects of concentration on partitioning 
of flexible chains into pores 

Tomas Bleha*, Peter Cifra* and Frank E. Karaszy 
Department of Polymer Science and Engineering, University of Massachusetts. 
Amherst, /VIA 01003, USA 
(Received 5 May 1989; revised 5 September 1989; accepted 9 September 1989) 

Equilibrium partitioning between bulk solution and pores was investigated by computer experiment using 
the Monte Carlo technique. In a multichain athermal system, self-avoiding walks of up to 60 steps were 
generated on a simple cubic lattice with variable pore size and chain concentration. The results demonstrate 
that the constraints imposed by the pores and/or neighbouring chains reduce the chain entropy. The 
entropy related parameter, the partition coefficient K (the equilibrium pore-to-bulk concentration ratio) 
increases linearly with bulk concentration q~. A maximum concentration dependence of K was found for 
large pores characterized by a coil-to-pore dimension ratio 2 of about 0.1-0.3. In this range the increase 
in bulk concentration brings about a dramatic enhancement of partitioning into pores. The results of 
computer experiments are compared with predictions of hard-sphere solutes theory and with static and 
gel-chromatographic measurements of the partitioning equilibrium. The implications of the concentration- 
dependent coefficient K for hindered transport of flexible polymers inside pores are briefly discussed. 
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I N T R O D U C T I O N  

The distribution of molecules between a porous medium 
and bulk solution is characterized by the distribution 
coefficient K, given as the ratio of the average concen- 
tration inside the pore to the equilibrium concentration 
in the bulk phase, K = Cp/C. In the ideal case of purely 
steric partitioning, the pore walls behave as hard walls. 
The geometric excluded volume adjacent to the pore walls 
that is not accessible to the centre of solute particles due 
to their finite size is responsible for the partitioning. In 
infinitely dilute solution the partitioning coefficient K o 
is determined only by interactions between pores and 
single isolated particles. 

The theoretical description of steric partitioning is at 
present focused on the dependence of the partition 
coefficient on the size and shape of the solute and the 
pore. For  spherical solutes analytical expressions for the 
coefficient K have been determined for pores of various 
idealized geometries such as spheres, slits, cylinders or 
pores with elliptical or rhomboidal  cross sections 1-3. 
Giddings et al. ~ have presented a general formulation for 
the partitioning of rigid particles of an arbitrary shape. 
For  flexible polymers, the partitioning of random flight 
chains between the bulk solution and pores of various 
sizes was analysed by Casassa 4 using a differential 
equation analogous to that used to describe heat con- 
duction. Expressions were derived relating the coefficient 
K to 2, the ratio of the characteristic dimensions of the 
coil, Rg, to a pore ap, where Rg is the radius of gyration 
of the polymer chain. This approach was later extended 
to star-branched polymers 5. However, Casassa's 4 funda- 
mental results are strictly valid only for flexible, infinitely 
long ideal chains under theta conditions in infinitely 
dilute solution. 
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At finite concentration solute solute interactions 
within the pores also have to be considered and the par- 
tition coefficient then becomes concentration dependent. 
Glandt  2'3 was the first to compute the effect of concen- 
tration on the coefficient K for purely steric hard 
sphere-hard wall interactions for pores of various shapes. 
He used a virial-type expansion of the coefficient K to 
the power of the bulk solution concentration 

K = Ko + ~I~) +~2(~ 2 (1) 

where q5 is the volume fraction of the solute in bulk 
solution. The calculation 2'3 predicted that the coefficient 
K would increase with the bulk concentration because 
the pore walls induced the accumulation of solute near 
the wall periphery even in the absence of attractive 
solute-wall forces. A similar theory 6 for the concen- 
tration dependence of the coefficient K was developed 
independently for rigid spherical macromolecules in both 
cylindrical pores and slits and was extended to systems 
containing charged solutes within pores. The effects of 
electrostatic interactions on the partitioning of spherical 
solutes at finite concentration have been discussed in 
more detail in reference 7. There is, unfortunately, no 
analytical theory available at present for the concen- 
tration dependence of the coefficient K for flexible 
polymers which would extend Casassa's results 4'5 to 
finite concentrations. 

Monte Carlo simulations (MC) on a lattice represent 
an attractive alternative to the analytical theories of 
partitioning for flexible chains 8-1°. Using this technique 
the essential result of the theory of partitioning, the 
behaviour of K as a function of 2, can be evaluated for 
a variety of situations where the analytical solution does 
not exist. For  example Monte Carlo studies 9 have 
demonstrated that chain flexibility plays a prominent role 
in partitioning and that the coefficient K for chains with 
finite segment length may be substantially higher than 
that for chains with infinitesimally short segments. Our 
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previous simulations~° focused on the effect of the solvent 
on the partition equilibrium and it was found that K 
versus 2 for a cubic pore was only slightly affected by the 
quality of solvent. In the present work the Monte Carlo 
technique is applied to investigate the concentration 
dependence of the coefficient K for flexible chains with 
a variable number of segments N in equilibrium with 
cubic pores of variable size. This problem is of consider- 
able interest to both theoreticians and experimentalists 
in connection with the concentration effects observed 
in static partitioning ~ ,  gel chromatography 12-14, and 
hindered transport of flexible molecules in porous 
materials ~s'16. The results reported in this paper cor- 
roborate and extend our previous conclusions ~7 in that 
the partition coefficient K increases linearly with bulk 
concentration and that partitioning in the larger size 
range of the pores may be dramatically enhanced. 

M E T H O D  OF  CALCULATION 

The procedure for generating self-avoiding walks on a 
simple cubic lattice with restrictions imposed by cubic 
pores is described in previous papers t°aT. Chains com- 
prising 20, 40 and 60 segments were generated in a cubic 
lattice of size L equal to 8 to 65 lattice sites. The scanning 
generation procedure was used 18 in which the lattice is 
filled by the addition of one chain at a time avoiding 
double occupancy of sites. Configurations were con- 
structed by adding monomers according to a step-by-step 
procedure. 

An athermal system with zero intersegmental energy 
in which the partition coefficient K is determined only 
by the entropic term: In K = (Scf-  Sf)/R = AS/R, was used 
in the simulations. The entropy of free chains (Sf) and 
chains confined by pores (Scf) at a concentration ~b 
expressed as volume fraction was obtained in two steps. 
First, a box representing a pore was filled by chains up 
to the required ~b. Then an extra trial chain was added to a 
multichain assembly 19 and the number of possible 
configurations of this chain WN at a given ~b was 
determined. A site occupied by the first segment of a 
chain was selected at random from unoccupied states and 
the number of its unoccupied neighbour sites 02 was 
counted. The second element of the extra N-mer chain 
was assigned randomly to any of the 02 sites. The third 
segment was randomly assigned to any of 03 free sites 
adjacent to the second segment and so on. This procedure 
was repeated many times for one multichain sample and 
also for many samples. The number of configurations 
per chain was then given by 

Averages were calculated for 3000-15000 trial chains. 
Volume fractions of up to about 0.25, 0.20 and 0.15 were 
used for chains with 20, 40 and 60 segments, respectively. 

The above method was used to generate a multichain 
system representing either the bulk solution in which 
periodic boundary conditions in the box were assumed 
or chains within a pore with reflecting but otherwise inert 
walls. In the latter case, the outer layers of the box (walls) 
were assumed to be inaccessible before filling the pore 
with chains. To ensure the same volume, different box 
sizes were used for confined and unconfined systems, 
L c f = L f + 2 .  

The mean square end-to-end distance of the chain ~2 
and the radius of gyration Rg were calculated in an 
analogous way, by averaging the self-avoiding walks. 
These quantities as well as the pore size ap=L/2 are 
expressed in the units of the lattice modulus. 

RESULTS AND DISCUSSION 

The molecule-to-pore size ratio 2=Rg/% is usually 
employed as a measure of chain confinement by a pore. 
The effective partitioning of macromolecules takes place 
in the range of large pores for which the radius of gyration 
is much smaller than the pore size. While av can be 
considered as a fixed parameter, the selection of an 
appropriate value of Rg to be used in 2 is more 
ambiguous. Traditionally, the radius of gyration R ° 
corresponding to a free chain in an infinitely dilute system 
is used as a measure of coil size. However, the confine- 
ment of a chain in a pore brings about a reduction in 
coil size. A typical example of this type of behaviour is 
shown in Figure I from calculations for a single chain 
with 100 segments confined in a box of size L under 
conditions simulating the theta state. It is evident that 
the considerable reduction in coil size occurs much earlier 
than at the point where the size of a free chain matches 
the pore size, i.e. at 2Rg ° = L. The dimensions of a confined 
coil at this point amount to only about 40% of the size 
of the free chain. The data in Figure 1 converge to the 
values calculated previously 2° for a free chain as the pore 
constraint is gradually relieved. 

The problem of finding appropriate values of Rg is 
further compounded at finite concentrations since an 
increase in concentration reduces the coil size, a phenom- 
enon well documented in the literature both by experi- 
ments 21 and by Monte Carlo simulations 19. Both factors 
which reduce the coil size, concentration and confinement 
by the pore walls, are similar and originate from the 
diminished number of configurations available to a 
reference chain. Despite these ambiguities, to facilitate 
the comparison with previous partitioning studies we will 
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Figure 1 The end-to-end distance ~2 and the radius of gyration R B of 
a chain with 100 segments as a function of the pore size L simulated 
in a theta system (with the intrasegmental energy parameter F=0 .26 ,  
ref. 10); results for unconfined chains are from reference 20 
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Table 1 The concentration dependence of the partition coefficient K 
according to equation (1). Simulations obtained for an athermal system 
of chains with a number of segments N at a coil-to-pore ratio 2 = R°g/%. 
K o and K(0.1 ) are the partition coeffÉcients at infinite dilution and bulk 
concentration ¢ = 0 . 1 ,  respectively 

N Rg ° 2 cq K o K(0.1) 

20 2.41 

40 3.68 

60 4.73 

0.08 1.54 0.82 0.98 
0.11 1.68 0.77 0.93 
0.16 2.04 0.64 0.84 
0.19 1.64 0.59 0.75 
0.24 1.18 0.51 0.63 
0.32 0.94 0.39 0.49 
0.48 0.41 0.20 0.24 
0.69 0.07 0.06 0.07 
0.80 0.00 0.03 0.03 

0.15 3.50 0.65 1.00 
0.25 2.33 0.46 0.69 
0.37 1.48 0.28 0.43 
0.61 0.18 0.09 0.10 
0.74 0.08 0.03 0.03 
0.92 0.0 0.0 0.0 

0.20 1.55 0.56 0.72 
0.27 1.31 0.43 0.56 
0.47 0.80 0.17 0.25 
0.79 0.05 0.02 0.02 
0.94 0.0 0.0 0.0 

henceforth use the value R ° computed for a single chain 
to express the ratio 2 (Table I). 

Both the bulk concentration and the pore confinement 
strongly affect the averaged thermodynamic functions of 
the chains. The dependence of the entropy of free chains 
and that of chains inside a pore as a function of the bulk 
phase volume fraction is shown in Figures 2 and 3 for 
chains of length 20, 40 and 60 at different values of 2. In 
agreement with our previous study for single chains ~° 
the entropy is strongly reduced by the confinement of 
chains inside pores and this trend is further enhanced by 
an increase in concentration. For small pores the very 
low concentrations within cannot be probed by compu- 
tations because even the most dilute systems with a single 
chain in a box correspond to a rather high value of 
volume fraction ¢. The data in this region can be derived 
only by extrapolation of the curves obtained at higher 
concentrations. Figures 2 and 3 also show data for 
unconstrained chains reported for an analogous multi- 
chain system by Okamoto 19. Both sets of data agree very 
well for chains with N = 20, however, for longer chains 
data from reference 19 predict a slightly sharper decrease 
in entropy with concentration than is indicated in our 
simulations. 

Because in athermal systems the partition coefficient 
is proportional to the change in entropy S¢f-Sf, the 
relative difference in the rate of decrease of the entropy 
curves for confined chains relative to those for free chains 
determines the concentration dependence of the partition 
coefficient. An identical rate of decrease of these curves 
indicates that K is independent of concentration. As an 
example, the above differences evaluated for chains with 
20 and 40 segments are plotted in Figures 4 and 5. The 
computed points in these figures can be approximated 
by straight lines. An analogous linear dependence of the 
coefficient K on the bulk volume fraction ¢ was also 
found for chains with 60 segments. Evidently, in the range 
of concentration studied, the first two terms in equation 
(1) are sufficient to describe the concentration dependence 
of the coefficient K. Although no data are available for 
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the coefficient K at high ¢ and low A, it is likely that K 
converges to unity but does not exceed it. 

The slopes ~ and intercepts Ko for the systems studied 
are listed in Table 1. The parameter K o, determined by 
extrapolation, refers to partitioning in infinitely dilute 
systems and its value may be different from that obtained 
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Figure 2 The entropy of free chains (A)  and of confined chains as a 
function of the bulk volume fraction ¢ at specified coil-to-pore ratios 
()~) in an athermal system for chains with N = 2 0 .  The open squares 
show data obtained for free chains from reference 19 
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Figure 3 The entropy of free chains ( t )  and of confined chains as a 
function of the bulk volume fraction ¢ at specified coil-to-pore ratios 
(2) in an athermal system for chains with N =40 and N=60 .  The full 
circles show data obtained for free chains from reference 19 
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by computation for the most dilute system, that containing 
a single chain. For  comparison Table 1 also lists the 
values of K(0.1) corresponding to the partition coefficient 
at concentration of 10 vol%. The magnitude of the slope 
~1 is a sensitive function of the confinement parameter 
2. In the region of large pores at 2 of about 0.1-0.4, the 
concentration effect becomes pronounced. It is seen from 
Figures 4 and 5 and from Table I that the concentration 
effect becomes negligible for small pores at 2 greater than 
about 0.7. As 2 ~ 0 the concentration effect also vanishes 
as the pore confinement becomes undetectable. These 
features of the variation of the slope ~1 as a function of 
2 are displayed by the curve for N = 20 in Figure 6 which 
has a sharp maximum for large pores. The position and 
magnitude of the maximum seem to depend on the chain 
length. However, a complete description of this depen- 
dence requires data of very high precision because K is 
a function of the difference of two large numbers in an 
exponent. Using our data a single curve in Figure 6 was 
constructed for chains with 40 and 60 segments. After 
reaching a maximum this curve must also drop to zero 
at 2=0 .  

From the data summarized in Table 1 the concen- 
tration effect can now be incorporated into the curve K 
vs. 2, which is the focus of the all theoretical treatments 
of partitioning. Such a plot for Ko and for K(0.1) is 
presented in Figure 7 and in the region of small 2 the 
dramatic shift of the partition curve in favour of increased 
partitioning is evident. For  example the partition co- 
efficient K(0.1) determined at the concentration of 
10vol% is about 33% higher than the infinite dilution 
value Ko for chains with 40 segments at 2=0.25.  As 
noted previously the number of segments may reflect 
either the chain length or the conformational flexibility 
of the chain. The shorter (or more rigid) chains bring 
about enhanced partitioning in a way similar to that 
caused by an increase in the bulk phase concentration. 
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F i g u r e  4 The partition coefficient K as a function of the bulk volume 
fraction q5 for chains with N = 20 at different values of 2 
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F i g u r e  5 The partition coefficient K as a function of the bulk volume 
fraction q~ for chains with N = 40 at different values of 2 
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F i g u r e  6 The dependence of the slope ~1 on the ratio 2 for chains 
with 20 (O),  40 (O) and 60 (V)  segments (solid lines). The dashed 
lines are theoretical plots for hard sphere solutes in a spherical cavity 2 
( - - - - )  and in a cylindrical pore 6 ( - - - - )  

Comparison with analytical theories 
The calculation of steric partitioning of hard-sphere 

solutes 2'3'6 is at present the only theory to which our 
MC results can be compared. Hence, Figure 6 also 
includes plots of the virial coefficient ~1 from equation 
(1) computed for spherical solutes in spherical cavities 2 
and analogous values from the alternative theory for 
cylindrical pores 6. Both curves show maxima at 2 of 
about 0.3-0.4, i.e. for slightly larger pores than MC 
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F i g u r e  7 The partition curve K versus 2 from simulations in an 
athermal system of chains with N=40 at infinitely dilute system (Ko) 
and at a concentration of 10vo1% (K(0.1)) 

curves show for flexible chains. The computations for a 
spherical cavity 2 which resembles more closely the 
present cubic box pores, predict a maximum of 1.27 for 
~1 at 2 about 0.3. 

Despite the only qualitative agreement of the curves 
for spherical and flexible chains in Figure 7, both 
approaches share a common origin with regards to the 
concentration effect, namely the existence of an enriched 
region of solute along the pore walls because of steric 
('excluded volume') interactions of solute and pore. The 
'layering' of the solute about the periphery of the pore 
is best demonstrated by density distribution curves 
computed for hard spheres in pores of various shapes 2 
and for flexible chains in a slit 22'23. By analogy with the 
results for spherical solutes we can expect that the 
layering of the chain segments along the pore walls is 
even more pronounced in the present case of cubic pores 
because of the presence of corners. The concentration of 
the enriched region should be greater in the corners 
of a box than in the centre of the faces of the box. 
This phenomenon was convincingly demonstrated 3 for 
spherical solutes in pores of polygonal cross section for 
which the concentration effect increases as the number 
of sides of the polygon decreases. It was emphasized 3 
that the replacement of a pore with polygonal cross 
section by a tubular pore could lead to severe under- 
estimation of the concentration effect. By analogy, the 
same deduction should apply when comparing the 
partition behaviour at finite concentration for a spherical 
cavity and for a cubic box. 

For  flexible chains, however, two additional factors, 
the connectivity of segments in a chain and chain 
compressibility, are operative in the concentration effect. 
The chain connectivity imposes a short-range correlation 
on the position of neighbouring segments and thus the 
thickness of the enriched layer should increase relative 
to the value for simple spherical molecules. The compress- 
ibility of flexible chains due both to the pore constraints 
(Figure 1) or to the concentration could be an even more 
important factor. The compression of the effective hydro- 
dynamic volume with increased concentration in the bulk 
phase has been considered as a major factor in the 
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thermodynamic theory12.13 of the concentration effect in 
gel chromatography. In gel chromatography the partition 
coefficient increases with column loading as the maximum 
of a peak shifts to higher elution volumes. The reduction 
of coil dimensions should be even more dramatic within 
pores because of the combined influence of constraints 
imposed by pores and by neighbouring molecules. In 
contrast to hard-sphere theories, the partitioning data 
from simulation also include the phenomenon of variable 
solute size during partitioning. To summarize, the 
comparison of the curves in Figure 7, the difference in 
the assumed shape of the pores, the chain connectivity 
and the compressibility of swollen coils contribute to the 
diversity of the curves, even if solute layering on the pore 
periphery is a common feature of steric partitioning of 
both spherical and flexible chain molecules. 

Comparison with experimental partitioning 
The effect of concentration on the partitioning of macro- 

molecules is well documented by numerous measure- 
ments of static equilibrium in porous supports or by 
gel chromatography 11 14,24--26. However because MC 
calculations on a cubic lattice do not reflect the structural 
details of real macromolecules, their comparison with 
experimental data is restricted to qualitative trends only. 
In addition, partitioning in the majority of experimental 
studies is governed not only by the steric mechanisms 
but also by other interactions such as solute adsorption 
on pore walls and electrostatic forces, which contribute 
to the overall partition coefficient. The complexity of pore 
geometry in porous supports and the frequent poly- 
dispersity of macromolecular solutes are additional 
factors compromising the comparison. 

In qualitative terms, the results of simulations 
are supported by several types of experimental obser- 
vations. In the majority of static and dynamic measure- 
ments 11-14'23-25 a linear dependence of K on the bulk 
concentration was observed in dilute solution (up to a 
concentration of several mass per cent); this function 
became concave only at higher concentrations. In agree- 
ment with these calculations only positive (or zero) slopes 
cq have been reported in the literature. The computed 
variation of the slope cq with 2 has its counterpart 
(assuming the fixed size of pore Up) in the concave 
function cq versus molecular weight M reported from 
experiment 1'~. The predictions of the hard-sphere theory 
have been compared to the experimental data for 
partitioning of dextran in equilibrium with glass porous 
beads in aqueous solution 11. It was found that the 
experimental data are consistently lower, smaller by a 
factor of 2 or 3 than the calculated results. The maximum 
measured value of ~1 was about 0.53 and similar values 
were found for )~ close to 1 where the theory predicts a 
negligible concentration effect. Using the concept of hard 
spheres, the data measured for partitioning of polystyrene 
with M n = 6.7 x 10 ~ in tetrahydrofuran in porous glass 14 
were recalculated 17 to give 0.18 for the slope cq. Because 
of the factors mentioned above it is difficult to attribute 
this experimental value to a specific range on the curve 
K versus 2. In a rough estimation it seems that the 
nominal pore size (10 nm) of CPG glass used 14 and solute 
size are comparable. Thus the ratio ), should be well over 
0.5 in the descending (to ,~--* 1) part of the curves in 
Figure 6. 

Finally, we note the significant difference between 
theory and experiment which concerns solute solvent 
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interactions. The presence of a solvent has not yet been 
explicitly accounted for in the hard sphere theory or in 
MC calculations. On the other hand practical consider- 
ations especially in gel chromatography, favour measure- 
ments in thermodynamically good solvents where the role 
of solvent-coil interactions in the concentration effect 
become prominent. The swelling of coils in good solvents 
considerably modifies their size. The gel chromatography 
measurements in various solvents have confirmed that 
the concentration effect (the slope ~l) is amplified or 
reduced depending on the solvent quality. The theory 
of the concentration effect 13 corroborates the experi- 
mentally found 14 dependence of the slope ~1 on the 
quality of solvent expressed as A2M where A 2 is the 
second virial coefficient of a macromolecular solute in a 
given solvent. In this way the theory has rationalized the 
concentration independent partition coefficient found for 
theta solvents 14. In contrast, this theory ~3, because it is 
based on the compression of coil volume, predicts zero 
values of ~a for all hard sphere solutes. Interestingly, the 
hard core theory 6 also suggests that the slope ~a should 
be proportional to the product A2M. 

In summary, the increase in bulk concentration favours 
partitioning, i.e. the curve K versus 2 is shifted to the 
right. Qualitatively, this shift also brings about a decrease 
in chain length, or an increase in chain rigidity, or 
attractive solute-pore interactions (adsorption) 9, etc. 
The hard-sphere data indicate that the inclusion of 
electrostatic interactions should reduce the partitioning 
and should shift the partition curve to the left. In gel 
chromatography an equivalent of the curve K versus 2 
is used, called the universal calibration, which relates the 
elution volume to the product [tl]M where [t/] is the 
intrinsic viscosity. The product [r/]M is proportional to 
the hydrodynamic volume of the solute and thus to the 
radius of gyration of the rnacromolecule and for fixed 
pore size ap is also proportional to the ratio 2. The elution 
volume is a direct measure of the partition coefficient. In 
this way the shifts of the theoretically computed partition 
curves K versus 2 can be related to the shifts of universal 
calibration curves which are well documented by experi- 
ment especially with respect to the solute concentration 
and solute adsorption ~2'17. 

Implications for hindered transport 
The effect of concentration on partitioning is of direct 

relevance to the hindered transport of flexible macro- 
molecules in porous materials. The apparent diffusion 
coefficient D of a solute in a pore is much smaller than 
the coefficient D~o in bulk solution. Similarly, during 
ultrafiltration through a membrane convective transport 
is restricted by pore walls. The fraction of solute rejected 
by a membrane, a, is denoted as the reflection coefficient. 
The two types of transport parameter D/Do~ and cr are 
related to the partition coefficient K. For hindered 
diffusion, the relation D/Doo = Kx-1 is valid, where x-1, 
the inverse enhanced drag or ratio of friction coefficient 
of the solute to that within a pore, can be readily 
evaluated for some simple configurations 2a. It should be 
noted in this context that recently a new direct measure- 
ment of the coefficient D inside pores was reported 29'3° 
based on quasi-elastic light scattering. This technique 
does not require the knowledge of the partition coefficient 
K to evaluate the coefficient D because it explores directly 
the movement of solute within the pore medium. 
However, phenomenological methods 15'28 still prevail in 

the determination of the coefficient D by determining the 
ratio of D/D,  which require knowledge of the coefficient 
K. In ultrafiltration, the reflection coefficient a is a 
function of hydrodynamic interactions and of the partition 
coefficient K. For the simplest case of steric interactions 
of hard sphere with a cylindrical pore, the simple relation 
a = (1 - - K )  2 applies 16'28. 

Because of an intimate connection between hindered 
transport and partitioning it is obvious that any concen- 
tration dependence of K will affect the ratio D/D~o and/or 
the coefficient a. For hard spheres in cylindrical pores 
experimental and theoretical results 7'31 have shown a 
reduction of a with concentration. Measurements of 
hindered transport of flexible polymers are usually 
performed at finite concentrations, however, the concen- 
tration effect is frequently overlooked and only in a few 
cases has been investigated 15'16. The scaling theory 
applied to rationalize these measurements 15,16 does not 
provide the numerical prefactors; in addition, the theory 
is apparently restricted only to the range of comparable 
sizes of coils and pores whereas the partitioning occurs 
when the coil size is smaller than the pore size. The 
concentration effect in hindered transport should be 
governed by the same mechanisms as discussed above 
for partitioning with suitable modifications for the 
superimposed hydrodynamic interactions of solute-wall 
and solute-solute. 

CONCLUSIONS 

Simulations in an athermal system have confirmed the 
linear dependence of the partition coefficient K on bulk 
concentration. In the range of small coil-to-pore size ratio 
2 this effect dramatically enhances the partition. The 
origin of the effect derives from the formation of an 
enriched region of segments on the periphery of the pore 
walls which has already been described for hard-sphere 
solutes and amended in the case of flexible chains because 
of their connectivity and compressibility. This type of 
concentration effect complicated by hydrodynamic inter- 
actions also operates for the hindered transport of flexible 
molecules at finite concentrations. 
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